Area and Power efficient booth’s Multipliers Based on Non-Redundant Radix-4Signed-Digit Encoding
Abstract
Keywords
References
G. W. Reitwiesner, “Binary arithmetic,†Advances in Computers, vol. 1, pp. 231–308, 1960.
K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. John Wiley & Sons, 2007.
K. Yong-Eun, C. Kyung-Ju, J.-G. Chung, and X. Huang, “Csdbased programmable multiplier design for predetermined
coefficient groups,†IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 93, no. 1, pp. 324–326, 2010.
O. Macsorley, “High-speed arithmetic in binary computers,†Proc. IRE, vol. 49, no. 1, pp. 67–91, Jan. 1961.
W.-C. Yeh and C.-W. Jen, “High-speed booth encoded parallel multiplier design,†IEEE Trans. Comput., vol. 49, no. 7, pp. 692– 701, Jul. 2000.
Z. Huang, “High-level optimization techniques for low-power multiplier design,†Ph.D. dissertation, Department of Computer Science, University of California, Los Angeles, CA, 2003.
Z. Huang and M. Ercegovac, “High-performance low-power left-to-right array multiplier design,†IEEE Trans. Comput., vol. 54, no. 3, pp. 272–283, Mar. 2005.
Y.-E. Kim, K.-J. Cho, and J.-G. Chung, “Low power small area modified booth multiplier design for predetermined coefficients,†IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E90-A, no. 3, pp. 694–697, Mar. 2007.
Refbacks
- There are currently no refbacks.
Copyright © 2013, All rights reserved.| ijseat.com
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.
Â