A HYBRID MODEL FOR WEB SERVICE CLASSIFICATION USING SSL AND CATBOOST
Abstract
References
S. E. El-Sayyad, A. I. Saleh, and H. A. Ali, ‘‘A new semantic web service classification (SWSC) strategy,’’ Cluster Comput., vol. 21, no. 3, pp. 1639–1665, Sep. 2018.
K. C. Li, Y. Xia, F. Xie, W. Liang, and M. Tang, ‘‘Predicting new composition relations between web services via link analysis,’’ Int. J. Comput. Sci. Eng., vol. 20, no. 1, p. 88, 2019.
B. Al-Shargabi, S. Al-Jawarneh, and S. Hayajneh, ‘‘A cloudlet based security and trust model for e-government web services,’’ J. Theor. Appl. Inf. Technol., vol. 98, no. 1, pp. 27–37, 2020.
H. Ye, ‘‘Web services classification based on wide & Bi-LSTM model,’’ IEEE Access, vol. 7, pp. 43697–43706, 2019.
K. Zhao, J. Liu, Z. Xu, X. Liu, L. Xue, Z. Xie, Y. Zhou, and X. Wang, ‘‘Graph4Web: A relation-aware graph attention network for web service classification,’’ J. Syst. Softw., vol. 190, Aug. 2022, Art. no. 111324.
M. Masdari, M. N. Bonab, and S. Ozdemir, ‘‘Correction to: QoS-driven metaheuristic service composition schemes: A comprehensive overview,’’ Artif. Intell. Rev., vol. 55, no. 2, p. 1605, Feb. 2022.
Q. She, X. Wei, G. Nie, and D. Chen, ‘‘QoS-aware cloud service composition: A systematic mapping study from the perspective of computational intelligence,’’ Expert Syst. Appl., vol. 138, Dec. 2019, Art. no. 112804.
P. B. Pandharbale, S. N. Mohanty, and A. K. Jagadev, ‘‘QoS-aware web services recommendations using dynamic clustering algorithms,’’ Int. J. Inf. Syst. Model. Design, vol. 13, no. 6, pp. 1–16, Sep. 2022.
P. Bagga, A. Joshi, and R. Hans, ‘‘QoS based web service selection and multi-criteria decision making methods,’’ Int. J. Interact. Multimedia Artif.Intell., vol. 5, no. 4, p. 113, 2019.
S. Rangarajan and R. K. Chandar, ‘‘QoS-based architecture for discovery and selection of suitable web services using non-functional properties,’’ ICST Trans. Scalable Inf. Syst., vol. 4, no. 12, Jan. 2017, Art. no. 152102.
M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E. Dashti, ‘‘CSA-WSC: Cuckoo search algorithm for web service composition in cloud environments,’’ Soft Comput., vol. 22, no. 24, pp. 8353–8378, Dec. 2018.
Z. Ivezić, Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. Princeton, NJ, USA: Princeton Univ. Press, 2019.
S. L. Brunton, B. R. Noack, and P. Koumoutsakos, ‘‘Machine learning for fluid mechanics,’’ Annu. Rev. Fluid Mech., vol. 52, no. 1, pp. 477–508, Jan. 2020.
M. J. Kaur, V. P. Mishra, and P. Maheshwari, ‘‘The convergence of digital twin, IoT, and machine learning: Transforming data into action,’’ in Digital Twin Technologies and Smart Cities. Cham, Switzerland: Springer, 2020, pp. 3–17.
M. Hasnain, ‘‘Machine learning methods for trust-based selection of web services,’’ KSII Trans. Internet Inf. Syst., vol. 16, no. 1, pp. 38–59, 2022.
Y. Qin, S. Ding, L. Wang, and Y. Wang, ‘‘Research progress on semisupervised clustering,’’ Cognit.Comput., vol. 11, no. 5, pp. 599–612, Oct. 2019.
S. Pattanayak and S. John, Pro Deep Learning With Tensorflow. Cham, Switzerland: Springer, 2017.
S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2014.
J. M. Duarte and L. Berton, ‘‘A review of semi-supervised learning for text classification,’’ Artif.Intell. Rev., vol. 56, no. 9, pp. 9401–9469, Sep. 2023.
S. Khezri, J. Tanha, A. Ahmadi, and A. Sharifi, ‘‘STDS: Self-training data streams for mining limited labeled data in non-stationary environment,’’ Appl. Intell., vol. 50, no. 5, pp. 1448–1467, May 2020.
Refbacks
- There are currently no refbacks.
Copyright © 2013, All rights reserved.| ijseat.com

International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.
Â


