A CNN2D-EXTENDED GRAPH FRAMEWORK FOR ACCURATE DETECTION OF DRUG–DRUG INTERACTION SIDE EFFECTS
Abstract
References
M. W. Al Nabki, E. Fidalgo, E. Alegre, and I. de Paz, ‘‘Classifying illegal activities on tor network based on Web textual contents,’’ in Proc. 15th Conf. Eur. Chapter Assoc. Comput. Linguistics, vol. 4, 2017, pp. 35–43, doi: 10.18653/v1/E17-1004.
G. Cascavilla, D. A. Tamburri, and W.-J. Van Den Heuvel, ‘‘Cybercrime threat intelligence: A systematic multi-vocal literature review,’’ Comput. Secur., vol. 105, Jun. 2021, Art. no. 102258, doi: 10.1016/j.cose.2021.102258.
J. Saleem, R. Islam, and M. A. Kabir, ‘‘The anonymity of the dark Web: A survey,’’ IEEE Access, vol. 10, pp. 33628–33660, 2022, doi: 10.1109/ACCESS.2022.3161547.
M. Balduzzi and V. Ciancaglini, ‘‘Cybercrime in the deep web,’’ Black Hat, Amsterdam, The Netherlands, Tech. Rep., 2015.
S. RahamatBasha and J. K. Rani, ‘‘A comparative approach of dimensionality reduction techniques in text classification,’’ Eng., Technol. Appl. Sci. Res., vol. 9, no. 6, pp. 4974–4979, Dec. 2019, doi: 10.48084/etasr.3146.
K. N. Singh, S. D. Devi, H. M. Devi, and A. K. Mahanta, ‘‘A novel approach for dimension reduction using word embedding: An enhanced text classification approach,’’ Int. J. Inf. Manage. Data Insights, vol. 2, no. 1, Apr. 2022, Art.no. 100061, doi: 10.1016/j.jjimei.2022.100061.
W. Alkhatib, C. Rensing, and J. Silberbauer, ‘‘Multi-label text classification using semantic features and dimensionality reduction with autoencoders,’’ in Proc. 1st Int. Conf. Lang., Data, Knowl., 2017, pp. 380–394, doi: 10.1007/978-3-319-59888-8_32.
M. Umer, Z. Imtiaz, S. Ullah, A. Mehmood, G. S. Choi, and B.-W. On, ‘‘Fake news stance detection using deep learning architecture (CNN-LSTM),’’ IEEE Access, vol. 8, pp. 156695–156706, 2020, doi: 10.1109/ACCESS.2020.3019735.
R. Basheer and B. Alkhatib, ‘‘Threats from the dark: A review over dark Web investigation research for cyber threat intelligence,’’ J. Comput. Netw.Commun., vol. 2021, pp. 1–21, Dec. 2021, doi: 10.1155/2021/1302999.
A. Alharbi, M. Faizan, W. Alosaimi, H. Alyami, A. Agrawal, R. Kumar, and R. A. Khan, ‘‘Exploring the topological properties of the tor dark Web,’’ IEEE Access, vol. 9, pp. 21746–21758, 2021, doi: 10.1109/ACCESS.2021.3055532.
L. Ouyang and Y. Zhang, ‘‘Phishing Web page detection with HTMLlevel graph neural network,’’ in Proc. IEEE 20th Int. Conf. Trust, Secur.Privacy Comput.Commun. (TrustCom), Oct. 2021, pp. 952–958, doi: 10.1109/TrustCom53373.2021.00133.
H. Alnabulsi and R. Islam, ‘‘Identification of illegal forum activities inside the dark net,’’ in Proc. Int. Conf. Mach. Learn.Data Eng. (iCMLDE), Dec. 2018, pp. 22–29.
D. Hayes, F. Cappa, and J. Cardon, ‘‘A framework for more effective dark Web marketplace investigations,’’ Information, vol. 9, no. 8, p. 186, Jul. 2018, doi: 10.3390/info9080186.
M. W. Al-Nabki, E. Fidalgo, E. Alegre, and L. Fernández-Robles, ‘‘ToRank: Identifying the most influential suspicious domains in the tor network,’’ Expert Syst. Appl., vol. 123, pp. 212–226, Jun. 2019, doi: 10.1016/j.eswa.2019.01.029.
M. W. Al Nabki, E. Fidalgo, E. Alegre, and D. Chaves, ‘‘Supervised ranking approach to identify infLuential websites in the darknet,’’ Int. J. Speech Technol., vol. 53, no. 19, pp. 22952–22968, Oct. 2023, doi: 10.1007/s10489-023-04671-9.
T. Sabbah, A. Selamat, M. H. Selamat, R. Ibrahim, and H. Fujita, ‘‘Hybridized term-weighting method for dark Web classification,’’ Neurocomputing, vol. 173, pp. 1908–1926, Jan. 2016, doi: 10.1016/j.neucom.2015.09.063.
S. He, Y. He, and M. Li, ‘‘Classification of illegal activities on the dark Web,’’ in Proc. 2nd Int. Conf. Inf. Sci. Syst., Mar. 2019, pp. 73–78, doi: 10.1145/3322645.3322691.
S. Nazah, S. Huda, J. H. Abawajy, and M. M. Hassan, ‘‘An unsupervised model for identifying and characterizing dark Web forums,’’ IEEE Access, vol. 9, pp. 112871–112892, 2021, doi: 10.1109/ACCESS.2021.3103319.
R. Li, S. Chen, J. Yang, and E. Luo, ‘‘Edge-based detection and classification of malicious contents in tor darknet using machine learning,’’ Mobile Inf. Syst., vol. 2021, pp. 1–13, Nov. 2021, doi: 10.1155/2021/8072779.
G. Cascavilla, G. Catolino, F. Ebert, D. A. Tamburri, and W. J. van den Heuvel, ‘‘‘When the code becomes a crime scene’ towards dark threat intelligence with software quality metrics,’’ in Proc. IEEE Int. Conf. Softw.Maintenance Evol. (ICSME), Oct. 2022, pp. 439–443, doi: 10.1109/ICSME55016.2022.00055.
Refbacks
- There are currently no refbacks.
Copyright © 2013, All rights reserved.| ijseat.com

International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.
Â


