Automatic Depression Screening Through CNN And EEG Data

MunjiSobha Latha

Abstract


Depression remains a challenge worldwide owing to subjective assessment techniques. In this particular project, we experiment with an automated depression detection system based on EEG signals using Convolutional Neural Networks (CNN). The required EEG data is pulled from a public Kaggle data set, where it is preprocessed and entered into a CNN model that classifies individuals as either depressed or non-depressed. The CNN model demonstrated a 93% accuracy rate, significantly outperforming traditional Support Vector Machines (SVM) which offered a 63% accuracy rate. The focus of the proposed solution is on early identification, which minimizes the subjectivity associated with diagnosis and enables the efficient scale of mental health screening and timely intervention within clinical environments.


Keywords


Depression Detection, EEG Signals, Convolutional Neural Networks, Mental Health Screening

References


Ay, B., Yildirim, O., Talo, M., Baloglu, U.B., Aydin, G., Puthankattil, S.D., Acharya, U.R., 2019. Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43 (7), 205. https://doi.org/10.1007/ s10916-019-1345-y.

Bakhshali, M.A., Khademi, M., Ebrahimi-Moghadam, A., Moghimi, S., 2020. EEG signal classification of imagined speech based on riemannian distance of correntropy spectral density. Biomed. Signal Process Control 59 (2), 101899–101911. https:// doi.org/10.1016/j.bspc.2020.101899.

Beck, A.T., 1974. The development of depression: a cognitive model. In: Friedman, R.J., Katz, M.M. (Eds.), The Psychology of Depression: Contemporary Theory and Research. John Wiley, Oxford, pp. 318–330.

Beck, A.T., Beck, R.W., 1972. Screening depressed patients in family practice. A rapid technic. PGM (Postgrad. Med.) 52 (6), 81–85. https://doi.org/10.1080/ 00325481.1972.11713319.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A., 2015. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinf. 9, 16. https://doi.org/10.3389/fninf.2015.00016.

Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L., 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebr. Cortex 19 (12), 2767–2796. https://doi.org/10.1093/cercor/bhp055.

Bradley, M.M., Lang, P.J., 1999. Affective norms for English words (ANEW): instruction manual and affective ratings. Technical Report C-1, the Center for Research in Psychophysiology. University of Florida.

Brainard, D.H., 1997. The psychophysics toolbox. Spatial Vis. 10, 433–436. https://doi. org/10.1163/156856897X00357.

Brinthaupt, T.M., 2019. Individual differences in self-talk frequency: social isolation and cognitive disruption. Front. Psychol. 10, 1088. https://doi.org/10.3389/ fpsyg.2019.01088.

Burns, D.D., 1980. Feeling Good: the New Mood therapy. New York, NY, USA, Signet. Chou, T., Deckersbach, T., Dougherty, D.D., Hooley, J.M., 2023. The default mode network and rumination in individuals at risk for depression. Soc. Cognit. Affect Neurosci. 18 (1), nsad032 https://doi.org/10.1093/scan/nsad032.

COVID-19 Mental Disorders Collaborators, 2021. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet (London, England) 398 (10312), 1700–1712. https:// doi.org/10.1016/S0140-6736(21)02143-7.

Daly, M., Robinson, E., 2022. Depression and anxiety during COVID-19. Lancet (London, England) 399 (10324), 518. https://doi.org/10.1016/S0140-6736(22)00187-8.

de Aguiar Neto, F.S., Rosa, J.L.G., 2019. Depression biomarkers using non-invasive EEG: a review. Neurosci. Biobehav. Rev. 105, 83–93. https://doi.org/10.1016/j. neubiorev.2019.07.021.

Eichstaedt, J.C., Smith, R.J., Merchant, R.M., Ungar, L.H., Crutchley, P., Preot¸iucPietro, D., Asch, D.A., Schwartz, H.A., 2018. Facebook language predicts depression in medical records. Proc. Natl. Acad. Sci. U.S.A. 115 (44), 11203–11208. https://doi. org/10.1073/pnas.1802331115.

Elliott, R., Rubinsztein, J.S., Sahakian, B.J., Dolan, R.J., 2002. The neural basis of moodcongruent processing biases in depression. Arch. Gen. Psychiatr. 59 (7), 597–604. https://doi.org/10.1001/archpsyc.59.7.597.

Engels, A.S., Heller, W., Spielberg, J.M., Warren, S.L., Sutton, B.P., Banich, M.T., Miller, G.A., 2010. Co-occurring anxiety influences patterns of brain activity in depression. Cognit. Affect Behav. Neurosci. 10 (1), 141–156. https://doi.org/ 10.3758/CABN.10.1.141.

Fahimi Hnazaee, M., Khachatryan, E., Van Hulle, M.M., 2018. Semantic features reveal different networks during word processing: an EEG source localization study. Front. Hum. Neurosci. 12, 503. https://doi.org/10.3389/fnhum.2018.00503.

Farruque, N., Zaiane, O., Goebel, R., 2020. Augmenting semantic representation of depressive language: from forums to microblogs. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (Eds.), Machine Learning And Knowledge Discovery In Databases. ECML PKDD 2019, Lecture Notes in Computer Science, vol. 11908. Springer, Cham. https://doi.org/10.1007/978-3-030-46133-1_ 22.

Ferdek, M.A., van Rijn, C.M., Wyczesany, M., 2016. Depressive rumination and the emotional control circuit: an EEG localization and effective connectivity study. Cognit. Affect Behav. Neurosci. 16 (6), 1099–1113. https://doi.org/10.3758/ s13415-016-0456-x.

Gabard-Durnam, L.J., Mendez Leal, A.S., Wilkinson, C.L., Levin, A.R., 2018. The harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front. Neurosci. 12, 97. https://doi.org/10.3389/fnins.2018.00097


Full Text: PDF [Full Text]

Refbacks

  • There are currently no refbacks.


Copyright © 2013, All rights reserved.| ijseat.com

Creative Commons License
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.

Â